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Abstract In this work we define a shape entropy by calcu-
lating the Shannon’s entropy of the shape function. This shape
entropy and its linear response to the change in the total
number of electrons of the molecule are explored as descrip-
tors of bonding properties. Calculations on selected molecular
systems were performed. According to these, shape entropy
properly describes electron delocalization while its linear re-
sponse to ionization predicts changes in bonding patterns. The
derivative of the shape entropy proposed turned out to be fully
determined by the shape function and the Fukui function.
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Introduction

Ionization phenomena is of paramount importance in areas
ranging from chemistry and physics to applied fields such as

health sciences and industry. Molecular ionization in gas
phase draws interest for applications in combustion the-
ory, electric ark generation and other charge transfer
reaction mechanisms.

Any tool that could provide insight on changes on molec-
ular bonding derived from electron ionization processes is
very valuable. Bonding analysis methodologies are nowadays
popular tools for molecular modeling applications [1, 2].
Critical points of electronic density are also used frequently
as indicators of chemical bonds [3, 4]. Despite all of these
laudable and successful efforts, there is still no streamlined
method to explore changes in bonding due to ionization.

In recent years Shannon’s entropy has received consider-
able attention in molecular research [5–10]. This entropy is a
measure of uncertainty in terms of a probability distribution
[11–14]. Shannon’s entropy has been employed in density
functional theory (DFT) studies for more than 20 years now
[15–23] on molecular and reaction analysis. In recent years
there has been a renewed interest in the formal foundations
and further applications of this sound concept [24–29]. When
applied to the molecular electronic distribution it provides a
measure of electron delocalization or lack thereof.

In this contribution we define a shape entropy by calcu-
lating the Shannon’s entropy of the shape function and
propose its linear response to molecular ionization as a
descriptor of changes in bonding patterns. We show how
this response can be easily calculated provided that analytic
Fukui functions are available.

The paper is organized as follows. In the Theory section the
shape entropy and its linear response to electronic ionization
(RSI) is formulated. In the Computational details section the
computational details are given. In the Applications section
the discussion of RSI graphics for a selected set of molecules
is presented. Concluding remarks and suggestions for further
applications are provided in Conclusions section.
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Theory

In order to present the formulation of the shape entropy and
its linear response to ionization, the concepts pertinent to the
subject are defined.

Shannon’s entropy

The concept of entropy from information theory, also known
as Shannon’s entropy [11] has been applied multiple times
on signal processing, communications, machine learning,
physics and chemistry [5, 11–14].

Shannon’s entropy measures uncertainty in terms of a
probability distribution. Its definition restricts it to random
variables that take discrete values. In order to extend this
discrete entropy to continuous variables one must resort to a
continuous or differential entropy (referred to as Shannon’s
entropy for simplicity purposes),

S ¼ �
Z

gðxÞ ln gðxÞdx ¼
Z

sgðxÞdx; ð1Þ

where g(x) is a probability density function and sg(x) repre-
sents the local contribution to Shannon’s entropy.

The shape function as an electron probability distribution

The molecular electron density, ρ(r), is the probability of
finding any electron at a given point of the space. The
electronic density integrates to the total number of electrons
of the molecule, N. In its normalized form it is known as the
shape function [30–32].

σðrÞ � ρðrÞ
N

: ð2Þ

This molecular function possess a number of interesting
properties which have been discussed by Cedillo, Ayers and
co-workers [31–37].

Fukui function

The Fukui function [38–42] measures the tendency of a
point or region in the molecule to release or accept electrons.
Formally, it is obtained by taking a derivative of the density
with respect to the number of electrons, N, at fixed external
potential, v(r),

f ðrÞ ¼ @ρðrÞ
@N

� �
vðrÞ

: ð3Þ

Derivative discontinuity ill-defines the Fukui function.
As a result, left and right-hand derivatives have been de-
fined [42–45].

f �ðrÞ ¼ @ρðrÞ
@N

� ��

vðrÞ
ð4Þ

In the context of the Kohn and Sham (KS) [46] imple-
mentation of DFT [47, 48] the Fukui functions can be
derived as [49]

f �ðrÞ ¼ jfHOMOðrÞj2 þ
Xocc
i¼1

ni
@jfiðrÞj2

@N
ð5Þ

f þðrÞ ¼ jfLUMOðrÞj2 þ
Xocc
i¼1

ni
@jfiðrÞj2

@N
; ð6Þ

where {ϕi} are exact KS orbitals and HOMO and LUMO
are the highest occupied and lowest unoccupied molecular
orbitals respectively. The second term of these equations is a
correction that takes into account the relaxation of the inner
orbitals when an electron is either added or removed. These
relaxation terms can be calculated analytically employing
linear response theory [50–55].

Shape entropy

The shape function is a normalized probality function that
describes the distribution of electrons. Therefore, it is an
appropriate probability function for the definition of a Shan-
non’s entropy that could measure electron delocalization,

Sσ ¼ �
Z

σðrÞlnσðrÞdr ¼
Z

sσðrÞdr; ð7Þ

from here on referred to as shape entropy.
In order to have an appreciable delocalization the shape

function cannot be too small because there would not be
electrons to delocalize at all. In the opposite case, large
values of the shape function would result in a very restricted
condition with too many electrons in a small region.
Regions with a value of e−1 ≈ 0.36 for the shape function
will result in the largest delocalization. Thus, delocalization
here means to have an appreciable number of electrons in a
condition where different configurations can be adopted
while producing the same density.

Shape entropy’s linear response to ionization

The linear response to ionization of the shape entropy can be
calculated by direct differentiation with respect to the total
number of electrons,

tσðrÞ � @sσ
@N

¼ � @σ
@N

lnσðrÞ þ 1ð Þ: ð8Þ

Similar results related to the linear response of the shape
function can be found in works of Cedillo and co-authors
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[31, 32, 34, 37], the derivative of the shape function is
obtained by differentiating Eq. (2),

@σ
@N

¼ 1

N

@ρðrÞ
@N

� ρðrÞ
N2

: ð9Þ

Assuming a vertical ionization process, the derivative of
the density with respect to the total number of electrons can
be interpreted as the Fukui function. In our formulation
there will be no restriction on the orbital targeted by the
ionization. The RSI will depend on the orbital from which
electrons are removed from or added to. Introducing a
generalized Fukui function, f p(r), for the ionization associ-
ated to pth orbital it follows:

t p
σðrÞ ¼

�1

N
f pðrÞ � σðrÞð Þ lnσðrÞ þ 1ð Þ; ð10Þ

with the following generalized form of the Fukui function:

f pðrÞ ¼ jfpðrÞj2 þ
Xocc
i¼1

ni
@jfiðrÞj2

@N
: ð11Þ

Computational details

All calculations were performed at the auxiliary density
functional theory level employing the deMon2k program
[61]. These calculation employed the local density approx-
imation by combining Dirac’s exchange functional [56] and
the Vosko, Wilk and Nusair correlation functional [57]. The
DZVP basis set [58] was employed in all calculations, while
the A2 set [59, 60] was the auxiliary function of choice.

Graphics were generated with a development version of the
software Sinapsis [62].

Applications

Shape function and shape entropy

Figure 1 plots the shape function, σ(r), for hydrogen mole-
cule, acetylene, benzene and cyclobutadiene.

Figure 2 shows plots of the local shape entropy, sσ(r), for
the same set of molecules. We decided to map sσ(r) on top
of the shape function, σ(r) in order to contrast the two fields.
In addition, a plot of shape entropy on the plane containing
all the atoms is presented. Here, a color ramp from red to
blue corresponds to high to low local shape entropy values.

To gain better insight on the information pertained to
shape entropy, we first analyzed the hydrogen molecule in
which there is only a single sigma bond. We observe that the
local shape entropy correctly defines regions of space which
are likely to contain delocalized electrons. The region with
higher shape entropy is along the line containing the two
hydrogen atoms. One can see that while an appreciable
density of electrons is confined to the interatomic region,
these electrons are not localized. This delocalization con-
tributes to the binding of atoms by providing different con-
figurations to reach the same bonding density. That is to say,
we have an entropic stabilization.

Acetylene molecule presents a higher shape entropy in
the C-C bonding region, including sigma- and pi-bonding.
C-H bonds are also high entropy regions but not as high as
C-C region as seen in Fig. 2.

Hydrogen Acetylene Benzene CyclobutadieneFig. 1 Isosurfaces for shape
functions

Hydrogen Acetylene

Benzene Cyclobutadiene

Fig. 2 Local shape entropy
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Continuous red lines are found parallel to the molecular
plane suggesting the ring delocalization usually attributed to
benzene aromaticity. This ring maxima is present close to
the molecular plane, as one goes away from the molecule
the red rings tend to disappear. On the sigma plane we
observed lower entropy over the C-H bonds than over the
C-C bonds.

Cyclobutadiene presents two stronger bonds according to
the red color in Shannon’s entropy. This is in agreement
with the widely accepted idea of cyclobutadiene being an
anti-aromatic compound.

Shape entropy’s linear response to ionization

As the local shape entropy seems to properly describe the
bonding regions in molecules, we decided to plot the shape
entropy’s linear response to ionization. These plots present
the variation of shape entropy of a system after an ioniza-
tion. Here, the red coloring shows a raise in shape entropy,
which we associate with bond strengthening, the blue col-
oring on the opposite end of the color ramp is associated
with bond weakening and the green zones are where the
shape entropy was unaffected by the ionization. In larger
molecules, ionization from representative internal orbitals is
analyzed along with the frontier orbitals.

Hydrogen molecule

Both the addition and removal of an electron from the H2

system leads to a weakened H-H bond as expected. For the
electron removal the plot shows a halo of mild entropy
growth around the system. For the electron addition we
observe a sharp growth in entropy next to the hydrogens
which displays the symmetric probability of any hydrogen

holding the added electron while dissociating the H-H bond.
Plots are shown in Fig. 3.

Acetylene

The addition of an electron to acetylene shows a decrease of
entropy over all the molecule bonds on the molecular plane
while a raise in entropy is observed around the C-H bond.
Looking at the molecular plane plot it is clear that the
growth in shape entropy is closer to the carbon nuclei than
to the hydrogens and it could indicate a structure bending to
the cis or trans structure of the C2H�

2 anion.
The removal of an electron from the HOMO causes a

raise in entropy around the C-C bond and on the outside of
the hydrogen nuclei. This could evince the formation of the
C-C-H and H cations when the drop in entropy along the C-
H bonds is taken into account.

The electron removal from the MO 3 provokes a rise on
the entropy along the C-C bond that extends from the sigma
to the pi region. While the entropy drops around the C-H
bonds, it also grows on the outside of the structure next to
the hydrogens.

For the core orbital (MO 2) ionization the entropy
decreases sharply all over the proximity of the molecule
while an entropy growth is observed close around the car-
bon nuclei and on the outside of the system, extending
slightly over the hydrogens.

Plots are shown in Fig. 4.

Benzene

The electron removal from the core orbitals (MO 6) shows an
entropy growth closely around the carbon nuclei while every
bond on the molecular plane experiences an entropic decrease.

HOMO LUMOFig. 3 Hydrogen plots for
linear response to ionization for
local Shannon’s entropy of
shape function

HOMO LUMO

MO 2 MO 3

Fig. 4 Acetylene plots for
linear response to ionization for
local Shannon’s entropy of
shape function

1680 J Mol Model (2013) 19:1677–1683



This behavior is reversed on the pi region, as a drop in entropy
is observed over the carbon nuclei and the space above the C-
C bonds, as well as the hydrogens, has an entropic growth.
One thing to note is the high entropy halo around the mole-
cule, right over the hydrogens as if their electrons were able to
move freely on the system’s periphery.

On the next energy level explored (MO 7), the high
entropy ring around the molecule persists. However, in this

case it also extends to the center of the system. This could be
interpreted as two high entropy zones connected over the C-
C bonds, effectively isolating low entropy zones around the
C-H fragments. This entropic response is consistent on both
the pi region and the molecule plane.

For the MO 17 electron removal, an entropy decrease is
observed on the sigma plane over the general molecule
structure while a sharp raise in entropy is experienced all

HOMO LUMO

MO 17 MO 18

MO 6 MO 7

Fig. 5 Benzene plots for linear
response to ionization for local
Shannon’s entropy of shape
function

HOMO LUMO

MO 12 MO 13

MO 4 MO 5

Fig. 6 Cyclobutadiene plots
for linear response to ionization
for local Shannon’s entropy of
shape function
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over the pi region above the carbon ring. This response is
also observed on both frontier molecular orbitals, with vary-
ing degrees of polarization on the trend.

The MO 18 has a peculiar response on the sigma C-C
bonds, which present a raise on delocalization while the
carbons and the C-H bonds show a sharp growth in electron
localization. This response is evenly expanded over the pi
region.

Plots are shown in Fig. 5.

Cyclobutadiene

For this system the extraction of an electron from a core
orbital (MO 4) leads to an entropy decrease on the C-H
bonds and the C-C double bonds. C-C single bonds are
affected as well but to a smaller degree. As on benzene, a
zone closely around the carbon nuclei suffers an augment in
entropy.

For the MO 5 entropy grows in the center of the ring.
This growth extends across the C-C double bonds while
each C-H fragment experiences an entropy decrease along
and around the bond.

On a higher energy level (MO 12) a response similar to
the core electron’s removal is observed, yet the entropy drop
along C-C bonds is more even between single and double
bonds. On the pi region the center of the ring experiences a
surge in entropy.

MO 13 response projects an entropy growth along the
double bonds on the sigma plane while the pi region shows
a decrease in entropy over the C-C double bonds and the
center of the ring.

The frontier orbitals continue to reflect the trending dif-
ferentiation between double and single bonds. An entropy
growth over the double bonds is revealed after the removal
of a HOMO electron. The addition of an electron to the
LUMO would see the entropy growth over the single bonds.

Plots are shown in Fig. 6.

Conclusions

The concept of Shannon’s entropy has been combined with
the local reactivity descriptors shape function and Fukui
function. The resulting shape entropy and its linear response
to ionization were explored by running calculations on
simple molecular systems. These calculations exhibited the
shape entropy’s ability to describe bonding properties as
evidenced by the images in this paper. Calculations on the
RSI revealed changes in bond strength and structure altering
associated to molecule ionization.

RSIs was expressed with high symmetry due to the fact
that calculations were formulated with molecular orbitals.
This effectively spreads the response to all atoms forming

the affected molecular orbital. This is evident on the ioniza-
tion of core orbitals where a keen decrease on entropy is
observed on the very center of every carbon nuclei.

An entropy could be formulated employing atomic orbi-
tals rather than molecular ones in order to explore the
response to ionization of a single nucleus. This could set a
platform for a predictive fragmentation tool useful in the
resolution of mass spectrograms.
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